

# OCORRÊNCIA DA FERRUGEM DO CAFEEIRO NO OESTE DE SÃO PAULO

#### **Edison M. Paulo**

Eng. Agr., Dr., PqC do Polo Regional da Alta Sorocabana/APTA edisonpaulo@apta.sp.qov.br

# Sonia Maria N.M. Montes

Eng. Agr., Dr., PqC do Polo Regional da Alta Sorocabana/APTA soniamontes@apta.sp.gov.br

#### Ivan H. Fischer

Eng. Agr., Dr., PqC do Polo Regional do Centro Oeste/APTA ihfische@apta.sp.gov.br

A ferrugem (*Hemileia vastatrix* BERKELEY & BROOME) do cafeeiro (*Coffea arabica* L.) induz a desfolha por ocasião da colheita, a queda precoce das folhas, o menor vingamento da florada e dos frutos na fase de chumbinho e a seca dos ramos plagiotrópicos das plantas de café, cujo conjunto de eventos pode reduzir em mais de 50% a produção das lavouras (ZAMBOLIM ET AL., 1997).

Os uredósporos da ferrugem são disseminados pelo vento e pela água e a germinação (ZAMBOLIM ET AL., 2005) e a longevidade do esporo (RIBEIRO ET AL., 1978) são dependentes da temperatura do ar. A germinação ótima dos uredósporos acontece quando há molhamento foliar (ZAMBOLIM ET AL., 2005).

A doença relaciona-se diretamente com o nível de produção do cafeeiro (MIGUEL ET AL., 1977; ZAMBOLIM ET AL., 2005) e é favorecida por deficiências nutricionais, manejo inadequado e espaçamentos reduzidos entre linhas da cultura que causam aumento do autosombreamento das folhas (VIEIRA JUNIOR ET AL., 2008).

Plantas que ainda não começaram a produzir e com menor porte em relação ao espaçamento e maior arejamento da copa têm microclima desfavorável à ocorrência da

ferrugem (ZAMBOLIM ET AL., 2005), pelo que se observa o aumento da intensidade da doença após as primeiras produções do cafeeiro (CHALFOUN, 1997).

O controle da ferrugem pode ser feito por meio de fungicidas ou pelo emprego de métodos alternativos como o controle biológico. A indução de resistência nas cultivares é considerada o controle ideal da ferrugem, pois o uso contínuo de produtos químicos aumenta os custos de produção, impacta o ambiente e pode causar a resistência dos fitopatógenos.

Cultivares sem resistência à ferrugem são amplamente utilizados nos sistemas de produção de café e podem diferir quanto ao grau de resistência à *H. vastatrix*, enquanto as resistentes podem ao longo do tempo se tornar suscetíveis à novas raças do fungo originadas por mutações genéticas (FAZUOLI ET AL., 2007).

O monitoramento da incidência da ferrugem nas cultivares é importante porque permite conhecer as épocas críticas de ocorrência, a identificação dos níveis de dano econômico e o momento ideal de iniciar o controle químico da doença (VIEIRA JUNIOR ET AL., 2008), o que por vezes pode ser conseguido com uma única aplicação de fungicida em lavouras com baixa a média carga pendente (GARÇOM, 2004).

O trabalho estudou o progresso temporal e a infecção de cultivares de cafeeiro pela ferrugem alaranjada no clima Aw do Oeste de São Paulo.

A pesquisa foi realizada nos municípios de Adamantina<sup>1</sup> e de Presidente Prudente<sup>2</sup>. A ocorrência de pústulas infecciosas características da ferrugem foi avaliada nas cultivares Acaiá IAC 474-19, Catuaí Amarelo IAC 47, Icatu Amarelo IAC 2944, Icatu Vermelho IAC 4045, Obatã IAC 1669-20 e Apoatã IAC 2258 (*Coffea canephora* PIERRE EX FHROEN) em Adamantina, enquanto em Presidente Prudente se avaliaram as cultivares Catuaí vermelho IAC 99, Icatu amarelo IAC 2944, Icatu vermelho IAC 4045, Mundo Novo IAC 388-17 e Obatã IAC 1669-20 enxertadas sobre Apoatã IAC 2258.

O período experimental foi de maio a dezembro de 2007 em Presidente Prudente e em Adamantina entre junho de 2008 a dezembro de 2009.

Nas avaliações quinzenais coletou-se ao acaso as folhas do terço superior, médio e inferior das plantas de café que foram separadas em folhas com e sem sintomas característicos da ferrugem. A infecção da ferrugem foi estimada pelo número de folhas com sintoma da

-

<sup>&</sup>lt;sup>1</sup> Pólo Regional de Desenvolvimento dos Agronegócios da Alta Paulista

<sup>&</sup>lt;sup>2</sup> Pólo Regional de Desenvolvimento dos Agronegócios da Alta Sorocabana

doença dividido pelo número total de folhas da amostra, multiplicado por 100, assim expressa em porcentagem de incidência.

### Resultados e Discussão

Os esporos da ferrugem do cafeeiro encontram condições ótimas para germinação quando há molhamento foliar prolongado e temperatura do ar de 22º C associadas à alta densidade foliar, processo este que abaixo de 15º C e acima de 28,5º C é inibido (ZAMBOLIM ET AL., 2005).

O processo de germinação desses uredósporos é favorecido pela presença da água na forma líquida, mas ocorre também sob ar úmido em 24 horas e temperatura de 24º C (GALLI; CARVALHO, 1980).

Em Presidente Prudente, no período de setembro a novembro e em Adamantina entre outubro de 2008 e março de 2009, apesar da ocorrência de temperaturas médias do ar dentro da faixa favorável para o desenvolvimento da doença, notou-se acentuado declínio da infecção da ferrugem nos cafeeiros (Figuras 1 e 2).

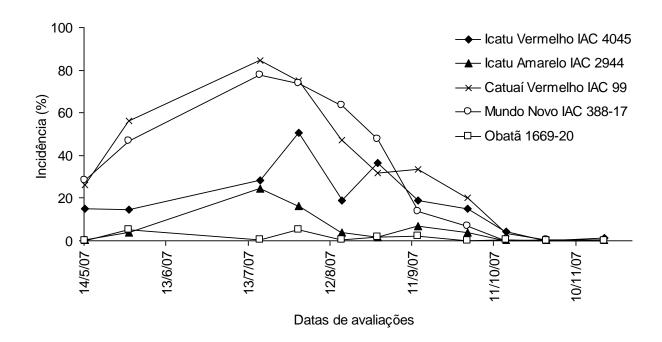
Nesses períodos houve precipitação pluvial e não ocorreram temperaturas mínimas menores que 15° C, pelo que se pode concluir que a germinação dos uredósporos foi inibida pelo maior número de horas de ocorrência das temperaturas máxima maiores que 28,5° C que aqueles acontecidos nos períodos de alta infecção.

Observou-se que as temperaturas máximas médias mensais oscilaram entre 29° C e 34° C com a ocorrência de temperaturas absolutas máximas maiores que 33° C até 39° C.

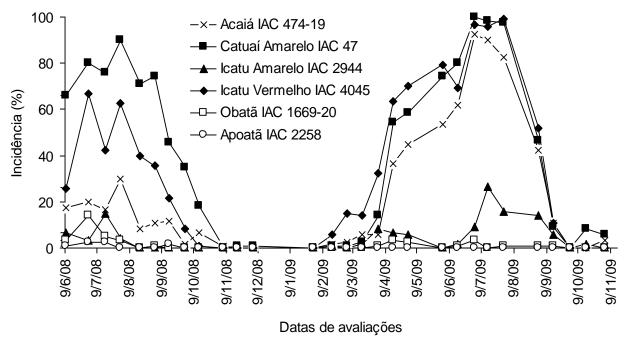
Relata-se que altas temperaturas impedem o desenvolvimento normal de *H. vastatrix* e são letais à ferrugem, mesmo quando o micélio já está estabelecido no interior da lâmina foliar, desde que a exposição à temperatura elevada seja suficientemente longa (RIBEIRO ET AL., 1978).

Já foi observado também que o período de incubação da ferrugem em cafeeiros a pleno sol foi maior quando as plantas foram submetidas à temperatura do ar de 31° C, medidas em abrigo micro meteorológico, comparativamente àquelas mantidas à sombra, onde as temperaturas do ar não atingiam aquele valor (MORAES ET AL., 1976).

A exposição de cafeeiros a temperaturas próximas a 40°C por quatro horas durante quatro dias foi suficiente para impedir a evolução da moléstia (RIBEIRO ET AL., 1978), o que contribui para explicar os resultados encontrados.


Constatou-se a menor incidência da doença nas cultivares Obatã IAC 1669-20, Apoatã IAC 2258 e Icatu Amarelo IAC 2944 (Tabela 1). Na prática tem-se com frequência a adoção de medidas de controle da ferrugem quando as lavouras apresentam 5 a 20% da doença (Cunha et al., 2004).

**Tabela 1**. Valores médios da área abaixo da curva de progresso da incidência (AACPI) da ferrugem do cafeeiro em cultivares de cafeeiro. Presidente Prudente, SP, 2007. Adamantina, SP, 2008-2009.


| Presidente Prudente     |          | Adamantina              |          |
|-------------------------|----------|-------------------------|----------|
| Cultivar                | AACPI    | Cultivar                | AACPI    |
| Catuaí Vermelho IAC 99  | 7809,4 B | Acaiá IAC 474-19        | 3618,4 B |
| Icatu Amarelo IAC 2944  | 1380,3 A | Apoatã IAC 2258         | 35,3 A   |
| Icatu Vermelho IAC 4045 | 8715,0 B | Catuaí Amarelo IAC 47   | 6167,4 C |
| Mundo Novo IAC 388-17   | 7172,5 B | Icatu Amarelo IAC 2944  | 679,3 A  |
| Obatã IAC 1669-20       | 328,3 A  | Icatu Vermelho IAC 4045 | 5326,4 C |
|                         |          | Obatã IAC 1669-20       | 196,5 A  |
| C.V.(%)                 | 15,9     | C.V.(%)                 | 18,0     |

Médias seguidas pela mesma letra na coluna não diferem entre si pelo teste de Tukey a 5% de probabilidade.

**Gráfico 1**. Curva de progresso da incidência da ferrugem alaranjada em cultivares de cafeeiro. Presidente Prudente, SP, 2007.



**Gráfico 2**. Curva do progresso da incidência da ferrugem alaranjada em cultivares de cafeeiro. Adamantina, SP, 2008-2009



### Referências

CHALFOUN, S.M. Doenças do cafeeiro: importância, identificação e métodos de controle. Lavras. UFLA/FAEPE, 1997. 96p.

CUNHA, R.L.; MENDES, A.N.G.; CHALFOUN, S.M. Controle químico da ferrugem do cafeeiro (*Coffea arabica* L.) e seus efeitos na produção e preservação de enfolhamento. **Ciência e agrotecnologia**, Lavras, v. 28, n.5, p.990-996, 2004.

FAZUOLI, L.C.; BRAGHINI, M.T.; SILVAROLLA, M.B., OLIVEIRA, A.C.B. A ferrugem alaranjada do cafeeiro e a obtenção de cultivares resistentes. **O Agronômico**, Campinas, v.59, n.1, p.48-53, 2007.

GALLI, F.; Carvalho, P.C.T. Doenças do cafeeiro. In: GALLI, F. (Coord.) **Manual de fitopatologia.** São Paulo: Editora Ceres, 1980. 587p. V.2. p.128-140.

GARÇON, C.L.P.; ZAMBOLIM, L.; MIZUBUTI, E.S.G.; VALE, F.X.R.; COSTA, H. Controle da ferrugem do cafeeiro com base no valor de severidade. **Fitopatologia Brasileira**, Brasília, v.29, n.5, p.486-49, 2004.

MORAES, A.S.; SUGIMORI, M.H.; RIBEIRO, I.J.A.; ORTOLANI, A.A; PEDRO JUNIOR, M. Período de incubação de *Hemileia vastatrix* Berk et Br. em três regiões do Estado de São Paulo. **Summa Phytopathologica**, Botucatu, v.2, n.1, p.32-38, 1976.

RIBEIRO, I.J.A.; MÔNACO, L.C., TISSELLI FILHO, O.; SUGIMORI, M.H. Efeito da temperatura no desenvolvimento de *Hemileia vastatrix* em cafeeiro suscetível. **Bragantia**, Campinas, v.37, n.2, p.11-16, 1978.

VIEIRA JUNIOR, J.R., FERNANDES, C.F.; RODRIGUES, V.G.S.; BENTES-GAMA, M.M.; SILVA, D.S.G.; FERNANDES, S.R.; DIOCLESIANO, J.M. Avaliação da severidade da ferrugem (Hemileia vastatrix) em cafeeiros (Coffea canephora) cultivados em condições de sombreamento. Porto Velho: Embrapa, 2008. 4p. (Circular Técnica 103).

ZAMBOLIM, L.; VALE, F.X.R.; PEREIRA, A.A.; CHAVES, G.M. Café (Coffea arábica L.): Controle de doenças causadas por fungos, bactérias e vírus. In: VALE, F.X.R.; ZAMBOLIM, L. (Ed.). Controle de doenças de plantas. Viçosa: Suprema Gráfica e Editora, 1997. p. 83-180.

ZAMBOLIM, L.; VALE, F.X.R.; ZAMBOLIM, E.M. Doenças do cafeeiro (*Coffea arábica* e *Coffea canephora*). In: KIMATI, H.; AMORIM, L.; REZENDE, J.A.M.; BERGAMIM FILHO, A.; CAMARGO, L.E.A. (Ed.). **Manual de fitopatologia:** doenças das plantas cultivadas. 4ª. Ed. São Paulo SP. Agronômica Ceres, 2005. 663p.